Studying Sub-Dendrograms of Resting-State Functional Networks with Voxel-Wise Hierarchical Clustering
نویسندگان
چکیده
Hierarchical clustering is a useful data-driven approach to classify complex data and has been used to analyze resting-state functional magnetic resonance imaging (fMRI) data and derive functional networks of the human brain at very large scale, such as the entire visual or sensory-motor cortex. In this study, we developed a voxel-wise, whole-brain hierarchical clustering framework to perform multi-stage analysis of group-averaged resting-state fMRI data in different levels of detail. With the framework we analyzed particularly the somatosensory motor and visual systems in fine details and constructed the corresponding sub-dendrograms, which corroborate consistently with the known modular organizations from previous clinical and experimental studies. The framework provides a useful tool for data-driven analysis of resting-state fMRI data to gain insight into the hierarchical organization and degree of functional modulation among the sub-units.
منابع مشابه
Analysis of Whole-Brain Resting-State fMRI Data Using Hierarchical Clustering Approach
BACKGROUND Previous studies using hierarchical clustering approach to analyze resting-state fMRI data were limited to a few slices or regions-of-interest (ROIs) after substantial data reduction. PURPOSE To develop a framework that can perform voxel-wise hierarchical clustering of whole-brain resting-state fMRI data from a group of subjects. MATERIALS AND METHODS Resting-state fMRI measureme...
متن کاملResting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملHierarchical clustering to measure connectivity in fMRI resting-state data.
Low frequency oscillations, which are temporally correlated in functionally related brain regions, characterize the mammalian brain, even when no explicit cognitive tasks are performed. Functional connectivity MR imaging is used to map regions of the resting brain showing synchronous, regional and slow fluctuations in cerebral blood flow and oxygenation. In this study, we use a hierarchical clu...
متن کاملStructural substrates for resting network disruption in temporal lobe epilepsy.
Magnetic resonance imaging methods that measure interregional brain signalling at rest have been advanced as powerful tools to probe organizational properties of functional networks. In drug-resistant temporal lobe epilepsy, resting functional magnetic resonance imaging studies have primarily employed region of interest approaches that preclude a comprehensive evaluation of large-scale function...
متن کاملMapping the Voxel-Wise Effective Connectome in Resting State fMRI
A network approach to brain and dynamics opens new perspectives towards understanding of its function. The functional connectivity from functional MRI recordings in humans is widely explored at large scale, and recently also at the voxel level. The networks of dynamical directed connections are far less investigated, in particular at the voxel level. To reconstruct full brain effective connecti...
متن کامل